- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
02
- Author / Contributor
- Filter by Author / Creator
-
-
Kabir, Md Shahriar (2)
-
Ngu, Anne H (2)
-
Alamgeer, Sana (1)
-
Debnath, Minakshi (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Deep learning models rely heavily on extensive training data, but obtaining sufficient real-world data remains a major challenge in clinical fields. To address this, we explore methods for generating realistic synthetic multivariate fall data to supplement limited real-world samples collected from three fall-related datasets: SmartFallMM, UniMib, and K-Fall. We apply three conventional time-series augmentation techniques, a Diffusion-based generative AI method, and a novel approach that extracts fall segments from public video footage of older adults. A key innovation of our work is the exploration of two distinct approaches: video-based pose estimation to extract fall segments from public footage, and Diffusion models to generate synthetic fall signals. Both methods independently enable the creation of highly realistic and diverse synthetic data tailored to specific sensor placements. To our knowledge, these approaches and especially their application in fall detection represent rarely explored directions in this research area. To assess the quality of the synthetic data, we use quantitative metrics, including the Fréchet Inception Distance (FID), Discriminative Score, Predictive Score, Jensen–Shannon Divergence (JSD), and Kolmogorov–Smirnov (KS) test, and visually inspect temporal patterns for structural realism. We observe that Diffusion-based synthesis produces the most realistic and distributionally aligned fall data. To further evaluate the impact of synthetic data, we train a long short-term memory (LSTM) model offline and test it in real time using the SmartFall App. Incorporating Diffusion-based synthetic data improves the offline F1-score by 7–10% and boosts real-time fall detection performance by 24%, confirming its value in enhancing model robustness and applicability in real-world settings.more » « lessFree, publicly-accessible full text available August 1, 2026
-
Kabir, Md Shahriar; Ngu, Anne H (, IEEE Pulse)Free, publicly-accessible full text available January 1, 2026
An official website of the United States government
